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ABSTRACT

In this paper we make further numerical experiments assessing an accuracy degener-

acy phenomena reported by A. Rogerson and E. Meiburg [7]. We also propose a modified

ENO scheme, which recovers the correct order of accuracy for all the test problems with

smooth initial conditions and gives comparable results with the original ENO schemes for

discontinuous problems.
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1 Introduction

ENO (essentially non-oscillatory) schemes were first developed by Harten and Osher [2],

Harten, Engquist, Osher and Chakravarthy [3], [4], to solve a hyperbolic conservation law

u, + f(u).,. = 0= (1.1)

whose solution may be discontinuous even if the initial condition u°(z) is smooth. The

philosophy of ENO schemes is to use an adaptive stencil, based on local smoothness, to

automatically avoid interpolations across discontinuities. As a result, a formally uniform

high order of accuracy, measured by local truncation errors, and sharp, essentially non-

oscillatory shock transitions can be obtained. Shu and Osher [8], [9] later proposed efficient

ways of implementing ENO schemes based on numerical fluxes and a special class of TVD

(total-variation-diminishing) Runge-Kutta type high order time discretizations, which uses

a conservative flux difference
1 ^ •

(fj+½_ (1.2)

to approximate f(u), in (1.1) to high order, where the numerical fluxes f are evaluated using

high order interpolation polynomials constructed from adaptive stencils.

Even if the numerical examples in [3],[8],[9] are very impressive, a convergence theory for

ENO schemes is still not available, due to the nonlinearity of the scheme. A more difficult

problem is to prove any convergence rate in smooth regions, since total variation stability,

a tool used very often for proving convergence of nonlinear schemes in one space dimension,

does not provide such a rate of convergence.

Recently, A. Rogerson and E. Meiburg reported in [7] that for a linear, constant-coefficient

version of (1.1):

{ ut+u_=Ou(x, 0) = u0(_) (1.3)

the convergence rate is dependent upon the initial condition u°(x) (assumed smooth) and

may be inferior to what is predicted by the local truncation error analysis. Furthermore the

error reduction during mesh refinements is not uniform and there are cases where a refined

mesh gives a larger error. The source of this phenomena is traced to the fact that a linearly

unstable stencil is initially chosen by ENO in a large portion of the domain. It was known

to Harten et al [3] that the use of linearly unstable stencils will lead to frequent stencil

switchings and loss of one order of accuracy due to the failure of error cancellation in the

conservative form (1.2) (they verified this by using the initial condition u°(z) = e -_ in (1.3)



so that the initial stencil chosen by ENO is always the linearly unstable downwind stencil).

The results in [7] indicates that the accuracy degeneracy phenomena can be more serious.

In this paper, we perform further numerical experiments, including the use of different

ENO schemes (cell-averaged version [3],[4] and the ilux-pointvalue verion [8],[9]) and different

time discretizations (TVD Runge-Kutta [8],[9] and exact time evolution [4]), to assess the

accuracy degeneracy phenomena more thoroughly. We also propose a modified ENO scheme,

which (1) introduces no additional computational cost over the original ENO scheme; (2)

recovers the correct order of accuracy for (1.3) with different smooth initial conditions; and

(3) gives comparable results with the original ENO schemes for discontinuous problems.

All the computations in this paper are performed on a Cray-2 supercomputer. The largest

number of grid points used is 5120.

2 Numerical Experiments with ENO Schemes

We use the third order ENO scheme based on numerical fluxes, and the third order TVD

Runge-Kutta time discretization, described in detail in [8],[9]. CFL number is chosen as
At

= 0.6 and the terminal time in (1.3) is chosen as t = 4 (two time periods). As in [7], We

choose the initial conditions u°(x) in (1.3) as periodic functions with period 2, in order to

exclude possible degeneracy of accuracy due to boundary conditions.

First we briefly revisit the two examples used in [7], i.e. u°(x) = sin(rx) and uO(x) =

sin4(Trx), using the more commonly used third order in space and time ENO scheme with

CFL = 0.6. As in [7], we can see that ENO is as accurate as the linearly stable centered

scheme for u°(x) = sin(_rx) (Figure la), but for u°(x) = sin4(_rx) the L1 error of the ENO

scheme no longer monotonically decreases with the mesh size, and the final asymptotic order

of accuracy is around 1.97, which is less than 3, predicted by local truncation error analysis

(Figure 2a). By monitoring the stencil as in [7], we can see that, for u°(x) = sin(_x), the

initial stencil chosen by ENO falls completely inside the linear stability range 0 and -1

(Figure lb), and it changes very little after two time periods (Figure lc). On the other

hand, for u°(x) = sin4(_rx), ENO initially picks the linearly unstable stencils 1 and -2 in

a large portion of the domain (Figure 2b) and then switches its stencil violently in order to

balance the linear instability effects (Figures 2c and 2d). To see the different behavior of

ENO scheme and the stable and unstable linear schemes, in Figure 2e we plot the logorithm

of the L1 error versus time for 160 grid points (which is the worst case for ENO from Figure

2a). We can see that for a short time the L1 error of ENO grows exponentially, similar

to that of the linearly unstable scheme, but later ENO quickly stablizes itself, apparently

through the nonlinear effect of stencil switching, while the linearly unstable scheme simply



blows up. However, what is lost to the accuracy during the brief exponential growth is not

recovered, resulting in a L1 error for ENO which for this case is almost two magnitudes

larger than that of the linearly stable centered scheme.

Our next example is u°(z) = e-'. This is a discontinuous initial condition since we

enforce periodicity. We compute the L1 error in the smooth region -0.5 < z < 0.5 at

= 4. From Figures 3a and 3e we can see that the linearly stable centered scheme now

performs very poorly, with large Gibbs oscillations near the discontinuity and only first

order accuracy even in the smooth region, due to the pollution of Gibbs oscillations. For

this particular example the pollution can be avoided by using an exact time evolution, but for

general nonlinear problems this pollution is very typical to high order linearly stable schemes

applied to discontinuous problems. ENO scheme behaves much better than the linear scheme,

cf Figures 3a and 3f, however we still observe the non-uniform decaying of errors with the

mesh refinements, similar to the previous case u°(z) = sin4(_rz). This example was used

in [3], without periodicity assumption, to illustrate the self-correcting mechanism of ENO

schemes. Exact time evolution was used in [3], which explains the difference there and in

Figure 3a. LFrom Figure 3b we can see, as expected, that the initial stencil chosen by ENO

is almost always the linearly unstable 1, and from Figures 3c and 3d we again observe the

violent stencil switching at later times.

Other initial conditions, such as u°(z) = 'sinl°(_rz), u°(z)= (x 2- 1) 4 enforcing period-

icity, u°(z) = e°_'('_), u°(z) = sin(cos(_rz)), etc., have been tested as well. We observe this

degeneracy phenomena, to different extent, for all those cases.

One naturally suspects whether this phenomena is related to the Runge-Kutta time

stepping. As a matter of fact the result for ENO does become better with an exact time

evolution [3], especially for u°(z) = e -=. However, for most of the cases we have tested,

this difference is only quantitative: the accuracy degeneracy phemonena is still present.

Figure 4a shows the result with exact time evolution for u°(z) = sin4(_rz). Comparing

with Figure 2a, we can see that the error of ENO now decays monotonically with mesh

refinements, and the final asymptotic order of convergence is around 2.5, which is better than

the Runge-Kutta case but still shows the degeneracy of accuracy. This suggests that the

root of this degeneracy is the ENO spactial operator, although Runge-Kutta time stepping

may compound the problem.

We have also tested the original cell-averaged ENO schemes in [3], with the same initial

conditions. We have not observed essential differences. Compare, e.g., Figure 4b with Figure

4a. For the equation (1.3), the only difference between the two versions of ENO schemes is

the initial condition (cell-averages versus point values).

Different spatial orders for ENO schemes are also tested: up to seventh order with exact

3



time evolution. The accuracy degeneracy phenomena is present for all orders, but is getting

less serious when the order increases. Compare, e.g., Figure 4c with Figure 4a. At seventh

order (Figure 4c) the ENO result is quite satisfactory in the practical range of the number

of grid points. This suggests that for a fixed cost, a higher order ENO with fewer grid points

may be preferred to a lower order one with more points.

Finally, the effect of this phenomena with different terminal time is tested. Figure 4d

(t = 8) should be compared with Figure 2a (t = 4). We clearly see qualitatively similar

results.

3 A Modification of ENO Schemes

The philosophy of ENO schemes is to adaptively choose stencils so that interpolations across

discontinuities can be avoided. In smooth regions there seems to be conceptionally no need to

choose linearly unstable stencils in the stencil-choosing procedure. The numerical evidence in

[7] and in the previous section suggests that it is even harmful to the accuracy. Consequently

some strategy to use a simpler fixed stencil linearly stable scheme in the smooth regions and

to use ENO near discontinuities seems to be appealing. Earlier work for such strategies has

already been documented in e.g., [5] and [10], with a motivation to save computational costs.

These approaches will also solve the accuracy degeneracy problems for the examples with

smooth initial conditions in [7] and in the previous section, since a linearly stable centered

scheme is used throughout the region except for possibly a few isolated cells near critical

points, which seems not to affect the accuracy in the numerical tests (S. Osher, private

communication).

In this section we discuss a modification of ENO schemes which involves only a slight

change in the coding, without increasing the computational costs. A similar modification

has been used in [1] for a different purpose (getting smoother steady state solutions). Instead

of using

for k = 2,...,r + 1: (3.1)
if (abs(H[i(j),k]).gt.abs(H[i(j) - 1, k]))i(j) = i(j) - 1

end for

to determine the left-most point i(j) in the stencil for computing the numerical flux ]j+½

in (1.2) (H[i,k] is the k-th divided (or undivided during the actual coding) difference of the



function H(x), whose definition and relations to f(u(x)) can be found in [9]), we use instead

i(j) = j (upwinding)

for k = 2,...,r + l :

if (i(j).gt.ic(j)) then

if (2 * abs(H[i(j),k]).gt.abs(H[i(j) - 1, k])) i(j) = i(j) - 1 (3.2)
else

if (abs(H[i(j),k]).gt.2 * abs(H[i(j) - 1, k]))i(j)= i(j) - 1

end if

end for

where ic(j) is the left-most point in the linearly stable centered stencil. By using this

modification, we are trying to bias towards the linearly stable centered stencil as much as

possible in the smooth regions. Since the ratio of the two differences being compared in (3.1)

is 1 + O(Ax) in smooth regions, it is easy to prove that in smooth regions where all the

derivatives of H(x) are non-zeroes, (3.2) will give the centered stencil when Ax is sufficiently

small. Near shocks the modifications should not affect the non-oscillatory philosophy, since

the differences being compared are then of different magnitudes.

We first test the performance of the modified ENO scheme (3.2) on the examples in [7]

and in the previous section. As one can see from Figures la and 2a, the modified ENO is

fully third order accurate and is in fact indistinguishable from the linearly stable centered

scheme for smooth initial conditions. From Figures 3a and 3g we can see that the modified

ENO performs much better than the linearly stable centered scheme and better than the

ENO scheme, by producing fully third order accuracy in smooth regions and a non-oscillatory

shock transition, when the initial condition is discontinuous. From Figures 2f, 2g and 3h, 3i

we can see that, in the smooth regions, the stencils of the modified ENO scheme are almost

always within the linearly stable choices 0 and -1. This is probably the main reason for its

excellent behavior. We have also tested the modified ENO scheme in many other cases, such

as all those mentioned in the previous section. Full high order of accuracy predicted by local

truncation error analysis is always observed.

We remark here that (3.2) with r = 1 is a MUSCL type second order (in the L1 sense)

TVD scheme discussed in [6] (with the minmod function replaced by a minimum-in-absolute-

value function). This is a major reason for our choice of the factor 2. Any factor bigger than

1 should have the same effect of biasing towards a centered stencil asymptotically. We do

not recommend a factor bigger than 2 since it will not produce a TVD scheme for r = 1.

A more important test for the performance of the modified ENO scheme is to apply

it to problems with both discontinuities and detailed smooth structures, we have already

seen the application to (1.3) with u°(x) = e-* in Figures 3a and 3g. We now apply it

to the one dimensional Euler equations of gas dynamics, which is a nonlinear hyperbolic



system. Wechoosetwo shock tube problems and a problem of shock interaction with density

perturbations, see [9] for detai_s of equations and parameters. Comparisons between Figures

3f and 3g, 5a and 5b, and 6a and 6b, reveal almost identical performance of ENO and

modified ENO schemes. For the more interesting test case of shock interaction with density

perturbations, Figures 7a and 7b, we observe a slightly better resolution of the modified

ENO versus ENO with 160 grid points, which is marginal for ENO to resolve this structure.

However, the modified ENO has a slight over-compression effect (step phenomena) in the

smooth regions, which is more visible in Figure 7d with 400 grid points. This is anticipated

since (3.2), in many cases (e.g. for r = 1), is similar to the artificial compression used in [10]

and [9].

4 Concluding Remarks

ENO schemes may lose the full high order accuracy predicted by local truncation error

analysis, for scalar linear conservation laws with smooth initial conditions. A modified

ENO scheme, which does not increase the computational cost, can overcome this accuracy

degeneracy problem for the test problems. For systems of nonlinear conservation laws with

solutions containing both shocks and detailed smooth structures, ENO and modified ENO

perform comparably, with the modified ENO having a slightly better resolution but showing

some over-compression effects.

Acknowledgment: We thank Stanley Osher for many valuable suggestions. We also thank

David Cottlieb, Eckart Meiburg and Andrey Rogerson for helpful discussions.
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Figure 7b: same as 7a except that Circles: modified ENO with 160 grid points
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